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In this article, data from a study of the mental computation competence of
students in grades 3 to 10 are presented. Students responded to mental
computation items, presented orally, that included operations applied to
fractions, decimals and percents. The data were analysed using Rasch
modelling techniques, and a six-level hierarchy of part-whole computation was
identified. This hierarchy is described in terms of the three different
representations of part-whole reasoning – fraction, decimal, and percent – and
is elaborated by a consideration of the likely cognitive demands of the items.
Discussion includes reasons for the relative difficulties of the items,
performance across grades and directions for future research.

Introduction
This article brings together two areas of mathematics education research
that individually have received considerable attention but that together
have been virtually ignored: mental computation and part-whole numbers,
specifically fractions, decimals, and percents. Mental computation research
has focused on the four operations with whole numbers, whereas part-
whole number research has focused on conceptual understanding, concrete
models, students’ strategies, and teaching intervention in the classroom.
This study sought to provide a developmental scale of increasing
proficiency in dealing with part-whole number operations in the context of
performing mental computations.

One of the justifications for interest in this study comes from the
increasing attention given to proportional reasoning based on part-whole
numbers at the middle school level. Traditional links between proportional
thinking and other parts of the mathematics curriculum have included
measurement, similarity in geometry, trigonometry, and basic probability.
More recently the links to chance and data have been highlighted in terms
of the relationship of samples to populations (Saldanha & Thompson, 2002)
and in the context of probability sampling and comparing data sets of
different sizes (Watson & Shaughnessy, 2004). Further, the focus on
quantitative literacy across a more eclectic school curriculum with higher
level numeracy requirements (e.g., Madison & Steen, 2003) leads to specific
statements of the need to apply proportional reasoning and calculations,
often undertaken mentally, based on fractions, decimals and percents in
many social and life-skills contexts (Steen, 2001; Watson, 2004).

The prominence of mental computation has waxed and waned in the
school curriculum over the past 150 years. The advent of calculators initiated
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debate about the necessity to have mental computation skills and even
brought into question the necessity for some of the paper-and-pencil
algorithms that flourished throughout the 20th century (McIntosh, 1990). By
2000, however, a balanced view on computation was advocated in the
National Council of Teachers of Mathematics’ [NCTM] Principles and
Standards (NCTM, 2000). Computing fluently is a goal at all grades, and the
methods to be employed include mental computation, estimation,
calculators or computers, and paper-and-pencil. Similarly in Australia, the
Australian Education Council’s [AEC] curriculum profile for mathematics
(AEC,1994) includes mental computation as one of its seven strand
organisers for the Number Strand, and this provides a second justification
for the study.

Mental computation with part-whole numbers is not ignored in
curriculum documents. In the NCTM’s Principles and Standards (NCTM,
2000), for example, the edict concerning choice among methods to compute
fluently with fractions and decimals appears in the Number and Operations
standard for grades 6-8. In the Australian profile (AEC, 1994) under Mental
Computation, simple fractions appear at level five; at level six students
should “estimate and calculate mentally with whole and fractional numbers,
including finding frequently used fractions and percentages of amounts”
(p. 104). There is, at present, no detailed research base on which to decide
whether these expectations are reasonable, and this presents a third
justification for the study.

Previous Research
The growing initial interest in mental computation has focused on addition
and subtraction of whole numbers (e.g., Heirdsfield, 2001; Hope, 1986; Reys,
Reys, & Hope, 1993), followed by multiplication and division of whole
numbers (e.g., Heirdsfield, Cooper, Mulligan, & Irons, 1999). As the numbers
involved become larger, issues related to place value become more
significant, as does the capacity to hold information in the mind (Callingham
& McIntosh, 2002). Hopkins and Lawson (2004) have shown that the time
taken to retrieve an answer to addition problems, as opposed to computing
the answer, gets longer as the problem size increases. Strategies used during
mental computation with whole numbers have been documented (e.g.,
McIntosh, De Nardi, & Swan, 1994; Threlfall, 2000), as have errors that occur
during the process (McIntosh, 2002). Research, however, has been slower to
focus on fractions, decimals, and percents. Caney and Watson (2003)
considered the successful strategies of 24 students interviewed while solving
part-whole number operations mentally. They found parallels to the
strategies described for whole numbers by McIntosh et al. (1994) and
provided examples illustrating the strategies employed.

Research into proportional reasoning more generally, related to the use
of fractions, decimals, and percents, has been on the mathematics education
agenda for a long time. An excellent recent summary of work principally
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with fractions is provided by Thompson and Saldanha (2003). Bana, Farrell
and McIntosh (1997) considered test items reflecting fraction and decimal
concepts rather than computation. They assessed number sense in terms of
distinguishing larger from smaller numbers, part from whole, and top from
bottom in fractions. The connections between proportional reasoning and
ratios were illustrated in the developmental work of Noelting (1980a, 1980b)
with consequent links to concepts in probability contexts (Shaughnessy,
2003; Watson, Collis, & Moritz, 1997). Building conceptual understanding
associated with proportional reasoning has been the focus of many studies
across contexts that constantly reflect back to the requirement for
multiplicative rather than additive features (Cobb, 1999; Harel & Confrey,
1994; Thompson & Saldanha, 2002). Related to this are the difficulties
associated with decimal representations, both on their own (e.g., Stacey &
Steinle, 1998) and in association with fractions (e.g., Watson, Collis, &
Campbell, 1995). Part of the focus of this body of work has been on
conceptualising the representation of fractions, decimals and percents, and
part has been on performing operations on quantities represented in these
fashions. In following students’ difficulties, however, there has been an
exploration of student explanation through interviews and through
responses to paper-and-pencil instruments (e.g., Steinle & Stacey, 2002) but
not on mental computation specifically. Although closely related to fractions
and decimals, working with percents does not seem to have attracted as
much research attention (e.g., Lembke & Reys, 1994). Dole (1999) suggested
use of a proportional number line as an appropriate computation strategy for
percent, but again not in relation to mental computation.

The interest in part-whole number operations in this study grew out of
a research project on mental computation more generally, which included the
four operations on whole numbers. A particular interest was in establishing
evidence concerning the hierarchical nature of performance in relation to
fractions, decimals, and percents. The fact that curriculum documents (e.g.,
AEC, 1994) imply a developmental progression in difficulty in referring to
mental computation with different types of numbers, reinforces the desire to
document this progression. The purposes of this article are:

• To describe a developmental scale of part-whole number mental
computation proficiency identified from the responses to the relevant
items in the instruments used in the study;

• To report performance against the scale across grades 3 to 10; and 

• To begin to explain the relative difficulties of items across the three
representations of part-whole numbers, fraction, decimal, and
percent.
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Methodology

Instruments and Procedures
Students undertook tests of mental computation that included whole
numbers as well as part-whole numbers: fractions, decimals, and percents.
These latter items were restricted to commonly used equivalents, such as
half, quarter, and third, and single operations including of, percent of and
the four key operations of addition, subtraction, multiplication, and division.
More complex numbers, such as mixed fractions and fractions expressed as
ratios, decimals to more than two places, and percents that could not easily
be expressed as fraction equivalents were not included in the instruments,
since it was considered that these lay outside what could reasonably be
expected to be undertaken mentally. The language used in the tests was
standardised: the addition operation was always expressed as add,
subtraction was subtract, multiplication was times, and division was divided
by. Decimals were given as zero point five … fractions as their usual fraction
names. Thus the item ‘1

2 of 0.7’ was spoken as ‘one half of zero point seven’.
The items were organised into tests that had overlapping items so that

they could be linked using Rasch (1960/1980) modelling techniques (Kolen,
1999). Over the three-year period of the project, six tests were developed for
each adjacent year group: grades 3/4, grades 5/6, grades 7/8, and grades
9/10. Each test contained whole number computations, as well as some
involving fractions, decimals, and percents. The part-whole items of
fractions, decimals and percents only are the focus of this report. 

Teachers administered the tests in their own classrooms, using a CD that
could be used in a standard CD player. The CD included all instructions to
the students to ensure a standardised testing environment. Students
responded by writing their answers only in the appropriate place on the
answer sheet; no paper and pencil calculations were allowed. Items were of
two kinds: short items had a three-second delay and long items a 15-second
delay to allow for students’ responses. Most of the fraction, decimal, and
percent items were long items (Callingham & McIntosh, 2001, 2002). 

Sample
The student sample was taken from the responses of students in grades 3 to
10 who were in schools that had a focus on developing mental computation
competence. Schools were from the Tasmanian Government and Catholic
sectors and the ACT Government sector, and included primary schools
(grades K to 6), high schools (grades 7 to 10) and composite schools (grades
K to 10). The sample distribution across grades for the subsample of students
used in this study is shown in Table 1. The number of students was lower in
grades 3 and 4, and these students were only presented with a limited
number of fractions items. Although this was a convenience sample of
students associated with a large collaborative industry research project, the
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size of the sample and its representation of government and private sectors
in two geographical locations lend credence to the belief that it is generally
representative of students in grades 3 to 10 across Australia.
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Data Collection
Data were collected at three different points in time but, for the purposes of
this study, the data have been combined into a single data set of 7235
responses to 374 different items. When students had not undertaken any of
the fraction, decimal or percent items, an ability measure of their
performance could not be estimated. These students were eliminated from
the data set, as were the students for whom there were missing background
data, such as grade level. The final sample, as shown in Table 1, consisted of
5535 valid responses to 122 items addressing only computations involving
fractions, decimals, and percents.

If students had been presented with the items, missing data were coded
as incorrect; if the items had not been presented, data were coded as missing.
Data were entered into a spreadsheet to allow for error analysis to be
undertaken. The items were scored dichotomously, using a 1/0 score for
correct/incorrect, and these data were subsequently used for Rasch analysis. 

Data Analysis
Rasch (1960/1980) modelling was used to place all items and all students
onto the same measurement scale using Quest v2.1 Rasch modelling software
(Adams & Khoo, 1996). Callingham and McIntosh (2001) demonstrated that
Rasch modelling was an appropriate technique to use to develop a scale of
mental computation competence because the characteristics of the Rasch
model allow a large number of items to be used in several tests that can be

Table 1
Sample Distribution Across Grades

3 381 6.88

4 342 6.18

5 800 14.45

6 879 15.88

7 940 16.98

8 867 15.66

9 736 13.30

10 590 10.66

Total 5535 100.00

Grade n Percentage of sample
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linked to bring all items, and the students who undertake them, into
alignment on a single measurement scale. The scale so produced provides a
means of describing progress against the underlying construct. Rasch
measurement has been used extensively to describe developmental levels
(Wilson, 1992, 1999), and the progress that students make along the scale is
concomitant with their development of competence (Bond & Fox, 2001). The
measure of proficiency thus obtained is termed the ability estimate. In this
study the target construct is proficiency at mental computation with part-
whole numbers. The items are placed on the same scale based on their
measured difficulty. Both ability and difficulty measures are expressed in
logits, the logarithm of the odds of success.

The scale produced by the Quest v2.1 Rasch modelling software (Adams
& Khoo, 1996) is presented as a variable map. Figure 1 shows a diagram of a
variable map of 20 items presented to 50 persons to illustrate the components
of the map. Logit values are shown on the extreme left hand side of the map.
Each person is shown by X, and the position on the scale indicates the ability
measure. Items are shown at the right hand side of the display, clustered by
measured difficulty level. Items are distributed about a mean of 0 logits. It
can be seen in Figure 1 that there are discontinuities, or jumps in difficulty,
between some items, such as that between It4 (Item 4) and the two higher
items, It7 and It11. These discontinuities indicate some change in the
demands of the items, and can be used to identify groups of items that form
clusters or bands along the variable of similar cognitive complexity. By
identifying groupings of items that have similar demands or complexity, a
profile of development can be identified (Bond & Fox, 2001; Griffin, 1990).
This process is used in many Australian state tests to indicate development
in mathematics and literacy (e.g., NSW Department of Education and
Training, 2002).
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When Rasch (1960/1980) analysis of the data set was undertaken, the
overlapping items among the different instruments used allowed all tests to
be equated and calibrated in a single operation (Kolen, 1999). A single
analysis, hence, linked all tests together and established the difficulty
estimates of each item, and the ability estimates of each student. The
approach provided a large item pool in which every item was connected to
every other item (Linacre, 1999). In this way, every item addressing fraction,
decimal, or percent computation was placed on a scale, and students’
performances on these items were converted into the same metric and placed
on the same scale. The unit of measure used was the logit, the natural
logarithm of the odds of success (Adams & Khoo, 1996). The model was
evaluated by consideration of infit mean square values (that is, the mean
squared differences between observed and expected values weighted by the
variance) for both items and persons. Generally accepted levels of fit lie
between 0.77 and 1.3 logits (Keeves & Alagumalai, 1999) and have an ideal
value of 1.0 logit. In addition, item and case separation reliabilities (Wright &
Masters, 1982) were used to provide a measure of the internal consistency of
the scale. These have a theoretical value of 1.00 and values less than
approximately 0.6 are generally considered low. These statistics were
available from the Quest output. 

Results
Model Evaluation
When the summary infit mean square values were considered, for all items
(IMSQ1 = 1.01) and for all persons (IMSQp = 0.97), fit values were within the
specified limits, indicating that the items worked together consistently to
define a unidimensional scale of part-whole reasoning, and that the students’
responses were also consistent. Item and person separation reliabilities were
high (R1 = 1.00; Rp = 0.82), indicating that the items produced a reliable
measure of students’ performance of mental computation of fraction,
decimal, and percent problems.

The scale produced by the Quest software is shown as a variable map in
Figure 2. The map shows the distribution of items on the right hand side and
persons on the left. For convenience, in this map where the operation is
‘divided by’, the operation is shown as d, and fractions are shown with a

b.
Thus ‘3

4 d 1
4’ represents the item presented as ‘three quarters divided by one

quarter’. Items shown in boldface type were short items; all others were long
items.

The horizontal lines on the map indicate the points at which there
appeared to be some change in the cognitive demands of the items for a
correct response. These points were identified by agreement between the
authors by considering the content of the items, the skills required to
compute the items successfully, and apparent discontinuities in the difficulty
levels. It should be noted that, because of printing limitations on the display,
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these discontinuities do not always appear clearly on the map. As an
example, consider the items 12 + 48 (Difficulty = -0.13 logit) and 1 – 13 (Difficulty
= -0.20 logit) that appear at the boundary between Level 3 and Level 4. The
difference in difficulty between these two items was small but greater than
the differences between each of these items and the items next to them in the
overall scale (e.g., 0.24 + 0.76, Difficulty = -0.11; 0.1 x 10, Difficulty = -0.22).
When the content was considered, although these were both fraction items,
the easier item, 1 – 1

3, required recognition only of unit fractions and one-
whole, and could be completed in a single step, whereas 1

2 + 4
8 required

recognition of a simple non-unit fraction that was equivalent to one-half, and
the addition operation of ‘one half add one half’. Each item where a
discontinuity was identified was similarly considered, and the ultimate
placement of the horizontal lines was agreed to by the two authors. The six
groupings of items thus identified, as shown in Figure 2, were labelled Level
A to Level F for convenience.
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Description of Identified Levels
As can be seen in the variable map in Figure 2, the only items appearing at
Level A involve the fraction one-half. The fraction ‘half’ has always had a
special place in the world of numbers. Hart (1981) gave it the title of
“honorary whole number” (p. 216), and Thornton (1985) considered the
halving operation to be so fundamental that it could be considered as an
operation beside addition, subtraction, multiplication, and division. It is of
interest that both uses of half, as number ( 1

2 + 12) and operator ( 1
2 of ...) appear

at Level 1. In essence, the cognitive demands of this level are limited to the
recognition of one half as a fraction.

At Level B the decimal and percent items appear to reflect the earlier
understanding of half. There is, however, an implicit understanding of more
general part-whole relationships, since decimals that sum to a small whole
number (e.g., 0.6 + 1.4) and simple partitioning (e.g., 1

3 of 15) appear in this
level.

Items appearing at Level C involve the earlier concepts with larger or
more complex numbers (e.g., 13 of 120; 4.5 – 3.3). The prominence of one-digit
decimal sums (e.g., 0.3 + 0.7) appears to be parallel to the sum of unit
fractions with the same denominators (e.g., 2

7 + 3
7). Notions such as bonds to

10 (e.g., using 4 + 6 = 10 to help with 0.4 + 0.6) applied to decimal numbers,
and the application of understanding of multiples and factors to fractions
and percents (e.g., seeing 25% of 80 as 80 divided by 4) could be inferred
from the nature of many of the items in this level.

At Level D, equivalence appears to become an important idea, with
fraction items such as 12 + 48, and percent items such as 20% of 25 appearing in
this level. The understanding of multiples and factors is sufficiently well
developed to be used for simple fraction division (e.g., 3

4 d 1
4). Place value

ideas are beginning to emerge in decimal items (e.g., 0.25 x 10).
Level E items use less familiar numbers and representations. In this

level, many of the earlier concepts appear to be consolidated and applied to
more complex items. In decimals, for example, the idea of bonds to 10 and
place value must be combined for success on items such as 0.18 + 0.2. In
fractions, the ideas of multiples and equivalence are used to solve 5 x 2

5, for
example, and place value and equivalence ideas can be seen in 90% of 40.
Implicit in these items is the need to draw on structures underlying the
number representations.

The highest level of the variable map, Level F, contains the most difficult
items presented to this group of students. Students at this level would
appear to have a sufficiently good grasp of the number structures to be able
to apply them successfully to a range of less familiar numbers and more
complex operations (e.g., 30% of 80; 12 + 13; 

20
0.5).
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Table 2
Summary of Identified Levels

Operations
involving 13 or other
non-unit fractions
including addition
of unit fractions
with different
denominators.

Multiplication 
of two decimals 
(1 d.p.); decimal
division where
multiples of the
digits are involved.

Percentages
involving less
familiar fraction
equivalents 
(e.g., 121

2%).

Uses underlying
structures for
computation 
with less familiar
numbers or
fractions with 
non-equal
denominators.

F

Addition or
subtraction 
with unequal
denominators;
whole numbers
multiplied by 
non-unit fractions
where cancelling 
is possible.

Multiplication by
powers of 10 (0.1,
10, 100); division 
of small whole
number by 0.1;
decimal sum 
of numbers with
unequal decimal
places.

10% and 90% 
of small 2-digit
whole numbers.

Draws on
underlying
structures, such 
as equivalence or
place value, for
straightforward
computations.

E

Level Fractions Decimals Percent Cognitive
Demands

Use of equivalent
fractions for 12, unit
fraction ‘of’ whole
number multiples,
or 12 of non-even
decimal; division
with 12 or 14.

Division by the
same decimals
(answer = 1); sum
to one whole with
regrouping; one 
and two digit whole
numbers multiplied
by 0.5; familiar
decimal multiplied
by 10 or 100.

Percentage
equivalents 
of quarter/three
quarter of whole
number multiples
of 4; 150% of even
two digit numbers
less than 30.

Understands 
and uses ideas of
equivalence in all
notations, and is
beginning to draw
on place value
concepts with
decimals.

D

Addition or
subtraction of
fractions with the
same denominator
or multiple (2, 4);
1
2 or 12 ‘of’ relate 
to multiples of 10.

Addition with the
same number of
decimal places;
subtraction of small
whole number from
a decimal (1 d.p.).

Only instances of
25% with multiples
of 10 less than 100;
10% of a small
multiple of 10.

Understands the
notion of one whole
and additional
parts, and is
beginning to
develop ideas 
of equivalence.

C

Mainly unit
fractions with
denominators of 2,
3 or 4; ‘of’ operation
used with unit
fractions of small
whole numbers 
or 12 of single digit
even numbers.

Equal addends of
the most basic
decimal equivalents
(of 12 and 14).

Only instances of
50% and 100%;
equivalence to a
half; knowledge of a
whole.

Understands part-
whole ideas and 
can use this with
fraction notation 
to partition simple
whole numbers.

B

Concept of one-half;
half of an even
whole number; 
no regrouping.

Recognises the
meaning of one-
half in fraction
notation.

A
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The levels appear to show increasing understanding of the structure of
part-whole numbers, and the application of number knowledge learned in
whole number contexts, such as factors and multiples, and place value.
These six levels are summarised in Table 2.

Performance across Grades
Figure 3 shows the percentage of students in each grade whose mental
computation ability, as measured on this scale, lay within each level. There is
a progression of increasing competence with part-whole reasoning in mental
computation across the grades, as would be expected.
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Figure 3.  Distribution of mental computation ability across grades.

Students in grades 3 and 4 have had little opportunity to develop
competence in mental computation with numbers other than whole
numbers, and more than half of the students in these two grades are in Level
A. On the other hand, students in grades 9 and 10 have generally met
fractions, decimals, and percents through their school experiences. Despite
this experience, over ten percent of students in the later grades can only deal
with the most limited part-whole calculations, such as those dealing with
half and its decimal and percent representations, which appear in Levels A
and B. Of particular interest is the performance in the middle years, from
grades 5 to 8. There does appear to be an increase in competence across these
grades, and this may reflect curriculum influences, with an emphasis on
teaching fractions, decimals and percents in the middle years of schooling.
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Level A 65.62 57.02 18.75 13.65 7.66 3.81 2.58 2.71

Level B 14.96 19.30 32.38 30.38 25.11 16.16 13.18 9.49

Level C 19.42 20.18 29.25 26.73 31.60 29.41 23.23 21.36

Level D 0.00 3.51 15.38 20.14 21.91 23.53 27.04 27.63

Level E 0.00 0.00 3.13 4.44 8.83 14.88 18.21 19.66

Level F 0.00 0.00 1.13 4.66 4.89 12.23 15.76 19.15
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Discussion
The discussion considers the results from the perspective of the demands of
the items at various levels, of the performance of students across grades 3 to
10, and of reasonable expectations for the classroom, together with the
implications for teaching. Directions for future research are suggested.

Relative Difficulty of Items
It should be remembered that the arrangement of the items in Figure 2
reflects student performance in a timed mental computation test, not in a
context where students could write on paper, drawing pictures or carrying
out known algorithms. In general terms, fraction items were easier than
decimals and percents, as shown by the appearance of similar items in
different representations. 

It appears that familiarity with fractions, especially half, is the first
requirement in the part-whole number arena at Level A. The extent to which
this finding reflects the school curriculum, which introduces fractions before
decimals and percents, or mirrors common usage of the language of half and
quarter, which may develop students’ facility with simple fraction
computations, is unknown. The presence of equivalent tasks for decimals
and percents at Level B may reflect their continued basic nature but later
introduction. Throughout the higher levels for fractions, the denominators
become larger, non-unit fractions appear, and denominators in sums and
differences are not the same. Although unit fractions of another number
occur at Level C, division by a fraction does not appear until Level D.
Multiplication by non-unit fractions appears at Level E and operations
resulting in denominators not in the original question appear at Level F. 

The different representations of the numbers appear to provide
additional complicating aspects of decimal mental computation, shown by
items appearing at a higher level than their fraction equivalents.
Multiplication by powers of 10 is an issue for decimal operations that is not
central for fraction operations. These products begin to appear at Level D.
Addition problems with decimals reflect increasing demands on place value
understanding (e.g., regrouping) with level. That the only two problems
involving the multiplication of two decimals are found at Level F may reflect
the later introduction of this type of problem and the interference of rule
learning without understanding in terms of where to put the decimal point.

All percent questions in this study were of the straightforward direct
calculation X% of Y type, where Y is a whole number. This reflects the
authors’ reasonable expectations of mental computation outcomes and
predicted use of them in actual life situations. The increased difficulty of the
items is apparently related to the movement from percent equivalents of the
fractions half and quarter, to multiples of 10% and the use of whole numbers,
where fraction-equivalents of percent values are not straight multiples or
divisors (e.g., 150% of 24, 90% of 40, or 30% of 80).
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In general, multiplication and division operations with part-whole
numbers are more difficult for students than addition and subtraction,
mirroring findings from whole numbers (Callingham & McIntosh, 2001).
Fraction multiplication in its simplest form (e.g., 3 x 23) does not appear until
Level E, after multiplication of a simple decimal by a power of 10 (e.g., 0.01
x 100), which appears at Level D. In terms of both language (three times two
thirds, or zero point zero one times one hundred) and mathematical
complexity, these kinds of fraction and decimal problems appear similar. The
consistency of the appearance of fraction multiplication problems at higher
levels than decimal multiplication problems, when the opposite is observed
for addition and subtraction, suggests that there may be some additional, as
yet unexplained, complexity. 

Dealing with single digits was generally easier than dealing with two
digits in decimal addition, as expected from research indicating that the
complexity of a problem increased its difficulty (Hopkins, 2004), whereas
multiplication problems were much more difficult. There were, however,
some anomalies. The item 0.25 + 0.25 appeared at Level B, whereas the
apparently easier item 0.5 + 0.5 was found at Level C. This may be explained
by a consideration of common errors. The common strategy of treat the
decimals as whole numbers and insert a decimal point in front would lead to a
correct solution of 0.50 if applied to 0.25 + 0.25, but an incorrect solution of
0.10 if applied to 0.5 + 0.5. This explanation was supported when the error
patterns were examined, with 0.10 accounting for over 80% of the errors for
the item 0.5 + 0.5. 

Performance across Grades
As seen in Figure 3, the performance in terms of levels improves with grade.
There is little change in distribution across the levels between grade 3 and
grade 4 or between grade 9 and grade 10. In the middle years, however, there
does appear to be a grade to grade change in performance from grade 5 to
grade 8.

For grade 3, all students are at Level C or below, whereas at grade 10,
roughly 20 percent or more of students are at each of Levels C to F. It is clear
that teachers need to deal with a greater range of performance from the
middle school level upward. Although this is not surprising, the distribution
of students in the top four levels, with the mode at Level D, suggests that
realistic expectations for grade 10 may not include Level E and F
performance for a majority of students. It also indicates that more effort must
be placed on mental computation skills and strategies if the goals of the
curriculum are to be met. The Victorian Curriculum and Standards
Framework (CSF) II standard for Level 5.1, for example, is “Extend the use
of basic number facts to mentally compute operations on fractions and
decimals, and squares and square roots” (Board of Studies, 2000, p. 139). The
results from this study suggest that less than half of all students in grades
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9 and 10 can deal well with mental multiplication of a decimal by powers of
ten, casting some doubt on the achievability of the CSF II outcome quoted.

The conjecture that curriculum emphasis on part-whole numbers in the
middle years may explain the growth in performance is borne out, to some
extent, by an examination of some of the common errors. In addition to the
appearance of treat decimals as a whole number and insert the decimal point
misconception, the fraction addition error of add the tops and add the bottoms
rarely appeared before grades 7/8. The item 1

4 + 1
4 , for example, was

presented to all grades. In grades 3/4, 60.0% of the students correctly
calculated the answer, and this percentage rose in grades 5/6 (83.2%), grades
7/8 (86.4%) to 90.2 % in grades 9/10. In the lower grades the most common
incorrect response was 1, accounting for 20.0% of the errors observed in
grades 3/4. There was a wide range of incorrect answers in these grades. The
second most common response was 30 (8.6% of errors) and the same
proportion wrote 8. Incorrect responses were often expressed as whole
numbers. In grades 5/6, there was also a variety of incorrect responses with
the most common being 1, 34 and 49 (11.1% of errors each). Only one student
answered 2

8 , which is a commonly expected incorrect response to fraction
addition problems. In grades 7/8, however, 2

8 became the most common
incorrect response (18.2% of the observed errors) and 1

4 accounted for a
further 13.6% of errors, which may have arisen from students reducing the
incorrect response of 2

8 to its simplest form. This pattern was similar in
grades 9/10, with 1 (44.6% of errors), 2

8 , and 1
4 (33.3% of errors) the most

common incorrect responses. Notably, no incorrect response in the higher
grades was a whole number, apart from 1, whereas whole number responses
were common in the lower grades. This observation suggests that students
are becoming increasingly familiar with part-whole numbers as they move
through school, but that they are also affected by partially understood rules.
Such findings have implications for teaching.

Future Research
There are several directions in which future research on mental computation
with part-whole numbers can proceed. As part of a larger study including
whole number operations, this study used a limited range of items,
sometimes with very few for a particular type of operation (e.g., multiplying
two decimals or combining operations with two of the types of numbers). It
will be instructive to expand the item set, while at the same time
remembering that mental computation is intended to involve realistic tasks
that one might be expected to perform in contexts outside the mathematics
classroom. Using only part-whole numbers and working with middle school
students would allow a more detailed analysis of what Watson, Kelly, and
Callingham (2004) have called partial number sense in relation to the errors
observed. This may in turn lead to the use of the partial credit Rasch model
(Masters, 1982) as a method of analysis, in which common errors are
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recognised and scored as partial understanding, and more detailed
developmental pathways identified. 

It is also of interest to consider the strategies that students report using
while completing mental computation tasks, and interviews with students
are likely to be helpful in this regard. Caney and Watson (2003), for example,
have begun this task by interviewing 24 students, sometimes discovering
unexpected paths to correct answers. This is a potentially fruitful area for
research that could lead to recommendations for teaching approaches. 

Comparisons of levels of performance with other students from different
systems, states, and countries will also be useful in developing policy about
appropriate teaching sequences to be employed in relation to mental
computation with part-whole numbers. This is particularly true in light of
the observation in this study that many students appear not to be meeting
the standards in current Australian curriculum documents.

It may also be possible to coordinate the study of mental computation
competence with other numeracy skills that are considered important across
the rest of the school curriculum. There is some evidence that teachers
implicitly expect mental computation in many different classroom situations
(Callingham, 2003). The interaction of mental computation skills with these
other facets of mathematics performance is likely to be a productive area for
future research.

This study has highlighted the progression of part-whole mental
computation proficiency across grades 3 to 10, and has identified apparent
difficulties of some forms of part-whole representation in the context of
mental computation. If the goals of the mathematics curriculum with regard
to mental computation are to be met, there is a considerable research agenda
needed concerning the strategies that students use and the trends in errors
that they make.
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